
Engineering
Strategy and Values
A document that represents our values as an engineering organization and our
processes for building software. This covers our philosophy towards coding and
architecture, as well as an understanding of how we make decisions about our work.
This document also serves to detail how we treat each other and expect to be treated,
and the core pillars of our engineering culture. This is who we always strive to be.

Table of Contents

Who we are 3

How we build products 5

How we author and contribute code 6

How we operate our software 7

How we test our software 7

How we organize ourselves and our work 8

3

Who we are

We are egalitarian and diverse
Taking on climate change - one of the world’s greatest challenges - requires diverse
perspectives. All team members (regardless of seniority) feel comfortable voicing their
opinion and feel that their opinions are appropriately and equitably considered. We believe
a diverse set of voices makes a stronger team. We recognize that every person on the
team makes an impact. We want to improve the status quo, both for our members and as a
technology team.

We are collaborative and supportive
We learn from each other and foster an educational working environment. We support each
other’s growth through pair programming, code review, lunch and learns, and collaborating
on difficult problems. We are constructive with peer feedback and respectful of each other.
Engineers who are part of this team should always be able to find peers happy and willing to
work through a problem.

We make time to learn new tools and features, ensuring that Arcadia Power is a place where
engineers can grow their skills and expand their comfort zone. We value this constant
improvement and share responsibility as a team to help others grow.

We don’t feign surprise.

… you shouldn’t act surprised when people

say they don’t know something. This applies to

both technical things (“What?! I can’t believe

you don’t know what the stack is!“) and non-

technical things (“You don’t know who RMS

is?!”). Feigning surprise has absolutely no

social or educational benefit: When people

feign surprise, it’s usually to make them feel

better about themselves and others feel worse.
 —RECURSE CENTER MANUAL (H/T JULIA EVANS)

https://jvns.ca/blog/2017/04/27/no-feigning-surprise/

4

We distribute ownership and knowledge
We encourage people to take initiative and challenge themselves with exciting technical
problems. We hire smart people, and we trust them to make good decisions. We have
autonomy to use new tools and features when we believe they are the best solution to
the problem. We recognize that the best way to engage team members is to give them
ownership of a project, but we strive to avoid situations where any one person is a
single point of failure or domain knowledge.

We move fast
We’re taking on an industry that is filled with massive monopolies that have no incentive
to care about their customers and a global problem that needed to be solved yesterday.
We believe that moving fast is a competitive advantage and strive for this in our
software development. We embrace this adventure and value frequent delivery and
incremental improvement.

We take care of ourselves and each other
We’re a startup engineering team, but we strive to balance work and life. If we see
teammates struggling or on an island, we try to reach out and offer help or guidance.
If we start feeling burned out, we talk about it and take time off. We’re solving big
problems, and we need to be healthy to come up with the best solutions.

We strive for excellence but embrace pragmatism
We always strive to author excellent, elegant solutions to problems, but we embrace
shamelessness. We emphasize simplicity and straight-forward logic over cleverness.
Sometimes you just need to solve the problem and move on, and as a team we
understand that. Effective software engineering is all about compromise and
constraints, and we embrace those, while keeping our eyes on our technical debt and
strategically paying it off. We care deeply about the quality of our products.

We are kind and respectful
This value is represented in all of the others, but it’s worthy of its own spot.
Being kind, empathetic and respectful to your peers is a key requirement for being a
part of this team.

https://www.sandimetz.com/99bottles/sample#_shameless_green

5

How we build products

We care about our members and our colleagues
The software we build solves problems for our members and our team. We find
satisfaction in making a better, more efficient experience for our internal teams. We know
that the energy industry is complicated and can be difficult to understand, so we work
hard to build software that helps our members navigate their options and gain a stronger
understanding of their choices.

We use the right tool for the job, while understanding that
sometimes the right tool is the one you already have
We are a polyglot organization. We believe that some tools are better than others for
certain problems, and we enable the use of those tools.

We recognize that the best way to build an engaged, high performing team is to give
team members ownership of problems or projects and empower them to make decisions
about technology. That said, we know the perils of too much disparity in a stack, so we
favor technologies we already have in order to maintain consistency and tooling, as well
as flexibility within our team.

We reduce risk and increase maintainability by building small,
meaningful isolated services
We believe that smaller, easier to understand codebases make for a better developer
experience and a more maintainable architecture. Where possible, we try to isolate
business logic into a dedicated service. We do this strategically, avoiding duplication of
logic and data wherever possible.

We are transitioning from a monolithic architecture to an extensible, API-driven service
architecture. We are doing this through a measured, deliberate approach.

The technologies currently in our stack
We use Ruby on Rails as our default server-side framework. We test our Ruby code with
RSpec and ensure consistent style with Rubocop. Our primary databases are PostgreSQL.

Our front end framework is React. We test with our front ends with Jest, Enzyme and
Puppeteer. We lint our JavaScript with ESLint and a custom variant of AirBNB’s linting
config. We use Apollo Server and Apollo Client to expose and interface with our
data through GraphQL. We use Python for specific data science, analytics, and data
collection tasks. Our data warehouse is Redshift. Our default infrastructure is AWS-based,
configured with Cloudformation authored through Stax.

https://github.com/rlister/stax

6

How we author and contribute code

We PR every line of code that goes into a production branch
Code review is critical for growth (for both the reviewer and author) and knowledge
sharing. We ensure everyone has the opportunity to ask questions or suggest changes to
solutions, while ensuring that the author gains confidence in the code.

We take on tech debt strategically by tying it into the product
roadmap and explicitly planning for it
We know that tech debt is never gone so we address it as an ongoing part of our product
roadmap. This means we sometimes add tech debt in order to deliver business value, but
we also sometimes need to move slower on product priorities in order to pay tech debt.

We flatten abstraction layers when they don’t add value, and
create abstractions when their value has been proven
We prefer duplication over the wrong abstraction. We strive to recognize the sunk cost
fallacy in existing code and understand that abstractions that may have been right
yesterday may not be right today.

We let computers nitpick style and formatting
We use static code analysis tools like Rubocop and ESLint to nitpick style in code. If we
find ourselves frequently asking code style or formatting questions in code review, we
seek to find a way to automate this check.

We blamelessly deal with bugs and issues
We understand that code and decisions are made under constraints and compromises
are the nature of engineering. For this reason, when issues or bugs manifest in the code,
we deal with them without casting blame on our colleagues. We are empathetic to the
compromises and work to move forward, not look back.

When the abstraction is wrong, the fastest way

forward is back. This is not retreat, it’s advance

in a better direction. Do it. You’ll improve your

own life, and the lives of all who follow.
 —SANDI METZ

https://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction

7

How we operate our software

How we test our software

We provision infrastructure through code
We believe in infrastructure that is easy to test, maintain, and recreate - and this means
storing our configuration in code.

We practice continuous integration, and favor
automatic deploys
Not all of our applications are automatically deployed, but where possible, we prefer to
automatically deliver the production or master branch. We work towards having high
confidence in our code through our CI pipeline. Where possible, we test end-to-end user
flows through browser automation with Puppeteer.

We make DevOps a first class citizen within our organization
We try to involve ops early and often. We value their expertise throughout the software
development lifecycle. They provide valuable insight into how to better structure our
applications and architecture to be more resilient and secure.

We believe in writing valuable tests
We strive to author tests that assert the logical parts of our software are working properly. We
avoid spending extra effort testing already well-tested frameworks or libraries that we use.

We monitor test coverage and seek to always improve it
We monitor our test coverage and limit large, untested code spikes. We strive for a high
percentage of test coverage, while understanding that 100% of lines covered is not a
reasonable or valuable goal.

We require tests to pass before deploying
Applications must pass CI before being deployed to production.

Wherever possible, we test the full stack
We understand that end-to-end tests can be brittle and infrastructurally complex. However,
when feasible, we prefer to test critical user flows across the entire stack.

8

How we organize ourselves
and our work

We wear lots of hats, but prioritize focus
When working as an engineer in a startup environment, people frequently wear several
hats. It’s not possible to have predefined lanes for everyone to work in as the software
rapidly evolves and the business grows. With that said, we recognize the extreme cost of
context switching and lack of focus, and work to minimize this as much as possible.

We favor small, quick stand ups. Each person has an impact on
their team.
We organize into small, cross-functional, domain-oriented teams. The intent is not to
silo or pigeonhole team members, but rather to ensure that teams understand where
their time is best spent without having to worry about everything going on across
the organization. To counterbalance siloing, we frequently collaborate across teams,
especially on new features that may require different viewpoints.

We minimize meetings, but aren’t afraid to have them when it
makes sense
We work best with long, uninterrupted blocks of time to write and read code. That said,
we know a 15 minute meeting can be a lot faster and more humane than a multi-hour,
asynchronous back and forth on a pull request.

